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ON THE USE OF STABILITY REGIONS 
IN THE NUMERICAL ANALYSIS 
OF INITIAL VALUE PROBLEMS 

H. W. J. LENFERINK AND M. N. SPIJKER 

ABSTRACT. This paper deals with the stability analysis of one-step methods in 
the numerical solution of initial (-boundary) value problems for linear, ordi- 
nary, and partial differential equations. Restrictions on the stepsize are derived 
which guarantee the rate of error growth in these methods to be of moderate 
size. These restrictions are related to the stability region of the method and 
to numerical ranges of matrices stemming from the differential equation under 
consideration. 

The errors in the one-step methods are measured in arbitrary norms (not 
necessarily generated by an inner product). 

The theory is illustrated in the numerical solution of the heat equation and 
some other differential equations, where the error growth is measured in the 
maximum norm. 

1. INTRODUCTION 

1.1. The numerical process. In this paper we analyze the stability of the numer- 
ical process 

(1. 1) Un = (p(hA)un-1 (n = 1, 2, 3,..) 

Here, h > 0 denotes the so-called stepsize and A is a square matrix of order s > 
1 . Further, (o is a given rational function with (o(0) = (o'(0) = 1 . We assume 
(z) = P(z)/Q(z), where P(z), Q(z) are polynomials with no common zero, 
and write (o(hA) = P(hA)Q(hA) 1 whenever the matrix Q(hA) is regular. The 
Un E Cs are numerical approximations computed in a step-by-step fashion from 
(1. 1) starting from a given uo E Cs. 

Many numerical methods for solving ordinary differential equations, such as 
Runge-Kutta and Rosenbrock methods, result, when applied to initial value 
problems for linear autonomous systems, in procedures of type (1.1). Further, 
many numerical schemes for solving initial-boundary value problems in partial 
differential equations can be written in the form (1.1). In the latter case, s is 
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related to the discretization of the space variables, and can attain large values. 
For examples, we refer to ?4. 

1.2. Error propagation. Suppose the numerical calculations based on ( 1.1) were 
performed using a slightly perturbed starting vector, say iU0, instead of uO . We 
then would obtain approximations that we denote by un . 

In the stability analysis of ( 1.1) the crucial question is whether the difference 
n= Un - un can be bounded suitably in terms of the perturbation vO = UO - 

uO. Since vn = (hA)iiun - 9(hA)un-I = 9(hA)vn-1, the stability analysis 
thus amounts to investigating the possible growth of vectors vn satisfying the 
recurrence relation (1.1). 

We shall measure the size of vn using an arbitrary norm Ixi for x = 

(fl , ..., 5s)T E C5. This norm is not required to be generated by an in- 
ner product, so that our discussion will include, e.g., the important maximum 
norm 

lxIK = max I~jj. 

In this paper we focus on stability estimates of the type 

(1.2) Ivnj ? y * 5PnqlvOI for s > 1, n > 1, and Vn satisfying (1.1). 

Here, y, p, q denote nonnegative constants independent of s, n, vo. 

1.3. Stability regions. An obvious manner to assess the stability of process 
(1.1) is to use the eigenvalues of the matrix (o(hA). Denoting the spectrum of 
A by [A], we see that the spectrum of (o(hA) equals (o(ho[A]). In order to 
guarantee (1.2), one thus arrives at the requirement that I (hi) I < 1 , or slightly 
stronger, lo(hp)j < 1, for all At E a[A]. 

Defining the stability region S of o by 

S= {C:C E C with ko(C)1 < 1}, 

the above two requirements can be cast into the form 

(1.3.a) ho[A] c S, 

(1.3.b) ho[A] c int(S), 

respectively. Here, int(S) denotes the interior of S. 
In the case of the Euclidean norm and a normal matrix A one easily sees 

that (1.3.a) implies (1.2) with y = 1, p = 0, q = 0. However, in more general 
situations, conditions (1.3) can be very unreliable. The point is that although, 
e.g., (1.3.b) guarantees (1.2) with p = q = 0, the size of y is not under control 
and can be arbitrarily large. This was pointed out by, among others, Griffiths, 
Christie, and Mitchell [ 1 1], who displayed an instructive example where one has 
essentially IvnI > anIvOI (n = 1, 2, ... , s), Ivn I < asIvOI (n > s) with a > 1 
and arbitrary dimension s > 1 . See also [15, 18, 22, 27, 28] and ??4.2, 4.3 of 
the present paper. 
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The unreliable conditions (1.3) can be converted into reliable ones, essentially 
by replacing c[A] by some appropriately chosen larger set T[A]. Here, T[A] is 
associated with the matrices under consideration and satisfies o[A] C T[A] c C. 
Under such modified conditions, stability estimates (1.2), with y nicely under 
control, were derived in [4, 6, 15, 20, 25, 27]. However, the conditions imposed 
in these references on h, A, and S are not completely satisfactory in that they 
cannot be fulfilled in some cases of practical interest. 

1.4. Scope of the paper. This paper attempts to improve the unsatisfactory sit- 
uation just mentioned. We shall derive stability estimates of type (1.2) which 
apply to some general situations not covered in the references cited above. We 
focus on modified versions of conditions (1.3), where a[A] is replaced by the 
so-called M-numerical range z[A], a subset of the complex plane recently in- 
troduced in [16]. 

In ??2.1, 2.2 we give our basic definitions and characterizations of the M- 
numerical range. Using this concept, we review in ?2.3 stability results from [4, 
6, 15, 20, 25, 27]. In ?2.4 we relate the M-numerical range to so-called circle 
conditions, which were basic for the stability analysis of [15, 20, 27]. 

Section 3 contains our main results. Section 3.1 gives an estimate (1.2) with y 
nicely under control and with the optimal values p = 0, q = 0. The conditions 
on hT[A] in ?3.1 are rather strong. Weaker conditions are dealt with in ??3.2, 
3.3. 

Section 4 illustrates the stability estimates of ?3. In ?4.1 we apply the material 
from ?3. 1 in proving strong stability with respect to the maximum norm of finite 
difference methods for solving the heat equation. Sections 4.2, 4.3 contain 
numerical experiments pertinent to ordinary and partial differential equations, 
respectively. 

In this paper we confine ourselves to using stability regions in deriving sta- 
bility estimates for linear, one-step processes (1.1) with arbitrary norms I . I in 
(1.2). For related stability results, based on stability regions, pertinent to non- 
linear differential equations, multistep methods, or norms generated by an inner 
product, the reader may consult, e.g., [7, 8, 19, 23, 27]. 

2. BASIC DEFINITIONS AND A REVIEW OF KNOWN STABILITY RESULTS 

2.1. Definition and elementary properties of the M-numerical range. For com- 
plex y and p > 0 we introduce the disk 

D[y, p] = {C: C E C with IC - 1 < p}. 

By I I we denote an arbitrary norm on Cs and by II II the corresponding 
induced matrix norm on Cs's, defined by IIAII = sup{IAxI:x E Cs with Ixi = 
1} for s x s matrices A. Let M > 1 be a given constant, and A = (ajk) an 
s x s matrix. 

We define a disk D[y, p] to be M-suitable for A if 

(2.1) II(A-yI)k I, < MPk (k = 1, 2, 3,...). 
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The M-numerical range of A (cf. [16]) is defined by 

(2.2) TM[A] = nD[y, p], 

where the intersection is over all disks that are M-suitable for A. 
In case M = 1, the set (2.2) can be seen to coincide with the so-called 

algebra numerical range (cf. [1, 2, 3]). Also, the terms Gerschgorin domain (see 
[26]), Hausdorff set, and field of values (see, e.g., [10]) occur in the literature 
to designate sets that coincide with the set Tz [A]. In the case of the maximum 
norm I - I =-1 lok, it is known (cf. [16, 21, 26]) that Tz[A] equals the convex 
hull of the union of the so-called Gerschgorin disks 

DJ[A] =C: C E C with C - ajjI E ajkI }. 
k34j 

We thus can write 

(2.3) Ti[A]=conv{ UD[A] if I = I - lo.s 

For general M > 1 it follows from definition (2.2) that (cf. [16]) 

(2.4.a) TM[A] is a compact, convex subset of the complex plane, 

(2.4.b) TM[COI + CIA] = Co + ClTM[A] for C0, C1 e C, 

(2.4.c) conva[A] C Tm[A], 

(2.4.d) TN[A] C TM[A] C T1[A] for 1 < M < N. 

(2.4.e) lim TM [A] = conv a[A]. M-+00 

2.2. Basic characterizations of the M-numerical range. We start with some defi- 
nitions that are needed for formulating subsequent characterizations of TM[A]. 

In all of the following, V denotes an arbitrary nonempty, closed, and convex 
subset of C. The distance from C E C to V is defined by 

d(CS. V) = inf IC-- I: E V}. 

If 4 belongs to the boundary a V of V and 

Re{e iO(C- 
- )} < 0 for all C E V, 

where 6 is a real constant, then 6 is called a normal direction to V at 4. 
The M-numerical range allows the following two characterizations (cf. [16]): 

(2.5.a) TM[A] is the smallest V with the property that (CI - A) is 
regular and I I (CI - A) ?kll < M.[d(C, V)]-k for all C 0 V and 
k = 1, 2, 35 ... . 

(2.5.b) TM[A] is the smallest V with the property that 

11 exp[te i (A - XI)]Hj < M 

for all t > 0 E a V, and normal directions 6 to V at . 
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In the following we use these characterizations to review in a coherent fashion 
some of the stability results to be found in the literature. 

2.3. A review of some stability results from the literature. In [4] Brenner and 
Thomee derived important stability estimates pertinent to linear operators A in 
Banach spaces. Specializing their general estimates to the s-dimensional space 
Cs, and using the characterizations (2.5), it follows that an estimate of type 
(1.2) holds with 

(2.6.a) p = 0, q = 1/2, y = y0M, 
provided (1.3.a) is strengthened to the condition 

(2.6.b) hTM[A] C C- C S. 

Here, C_ stands for the halfplane 

C_ = {C:C E C with ReC < 0} 

and y0 is a constant depending only on ?o. In a similar way one can conclude 
from [4, 25] that a sharper estimate (1.2) holds, with 

(2.7.a) p = O, q = O y = y0M, 
provided (1.3.a) is strengthened to the condition 

(2.7.b) hTM[A] C W(a) c {O} U int(S) and 1(0(oc)I < 1. 

Here W(a) stands for a wedge 
W(a) = {IC: C E C with 4 = 0 or X > j argC1 > 7r - a} 

with 0 < a < r/2, and 70 depends on (0, a only. We note that (2.7) can also 
be viewed as a corollary to a result by Crouzeix [6, Theorem 8]. 

The above conditions (2.6.b), (2.7.b) cannot be fulfilled by explicit methods 
(1.1) (i.e., methods where ( (C) is a polynomial). But the following two stability 
results are relevant also for the case of explicit methods. 

In [15, 20, 27] it was shown that (1.2) holds with 

(2.8.a) p = O, q = 1/2, y = Y0 

under the condition 

(2.8.b) hD[-p, p] c S. 

Here p > 0 is associated with the matrix A such that the circle condition 

(2.9) IIA + pIll < p 
is fulfilled. Further, Yo depends on go, hp only. 

In [15] a sharper estimate (1.2), with 

(2.10.a) p=0, q=0, Y=Y7, 
was derived under a slightly stronger condition than (2.8.b), viz. 

(2.10.b) 0 < h < ho with hOD[-p, p] c S. 

Here, p is as in (2.9) and y0 depends again on (0, hp only. The proof in [15] 
is given only for the maximum norm 1 I = I K I., but it is easily verified that 
the result (2.10) is still valid for an arbitrary norm I . I on Cs. 
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2.4. Comparing the use of circle conditions to the use of M-numerical ranges. In 
?3 of this paper we shall derive stability estimates (1.2) under conditions of type 

(2.11) hTM[A] c V. 

Here, V will be a bounded subset of S. Similarly as (2.8.b), (2.1 O.b), condition 
(2.11) can be relevant also for the case of explicit methods. 

We shall compare (2.11) with (2.8.b), where p > 0 is assumed to be a 
minimal radius with property (2.9). We review various cases. 

1. Let V = D[-r, r] with r>0, M = 1, I = K Using (2.3), we can 
see that (2.11) is equivalent to 

(2.12) hD[-p, p] c V. 

2. Let V = D[-r, r] with r > 0, M = 1. With respect to arbitrary norms 
I I, condition (2.11) is no longer equivalent to (2.12). This follows from the 

following counterexample, modelled after an example of J. Kraaijevanger [14]. 
With the choice of the Euclidean norm I I = I 12 on C2, the matrix 

A --r O0 
A=3r -r) 

can be seen to satisfy 

Td[A] c D[-r, r], IIA + rIll > r, r < p < oc. 

Hence, with h = 1, (2.11) holds, but (2.12) is violated. 
In view of (2.2), condition (2.11) will thus, in general, be weaker than (2.12). 
3. Let V not be equal to a disk, and M = 1. From (2.2) it follows that (2.11) 

is now always a weaker condition than (2.12). We thus cover more situations 
by relaxing (2.12) to (2.11). 

The above makes clear that when M = 1 the set T[A] = TM[A], which 
we focus on in this paper, has fundamental advantages over the set T[A] = 
D[-p, p] with p as above. Moreover, in view of (2.4.d), (2.4.e) we see that, 
by increasing M, stepsize conditions of type (2.11) can become still weaker 
and close to the "optimal" condition 

hconvo[A] c V 

(cf. (1.3.a)). 

3. STABILITY ESTIMATES BASED ON THE NUMERICAL RANGE 

3.1. Stability with p = 0, q = 0, for TM[A] within a bounded wedge. In this 
subsection we derive stability estimates for process (1.1) which are similar to 
the result (2.7). But the conditions we impose on (0 are essentially weaker than 
in (2.7.b), and can be fulfilled, e.g., when (p is a polynomial. On the other 
hand, the conditions we impose on hA are stronger than in (2.7.b). Our main 
result will be formulated in Theorem 3.2. Its proof will rely on an application 
of the following lemma (with A replaced by hA). 
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We make the assumptions that 

(3. .a) 0 < a < 7r/2 and V is a compact, convex subset of W(a), 
(3.1.b) V c int(S) U {0}, 

(3.1.c) s > 1 A E CSs, and M > 1. 

Lemma 3.1. Assume (3.1), and let (CI - A) be regular with 

(3.2) II(CI- A)-< Md(C, V)' for all/C V. 

Then 
lIIq(A)nII < YOM (n = 1, 25 3,..) 

with yo depending only on ( and V. 

Proof. We will express (9(A)n by means of an integral along a contour around 
V, the construction of which is possible because of (3. L.a,b). 

The set V5 = {C:C E C and d(C, V) <? } is convex for each ( > 0. By 
using Theorem 10.4 in [24] one can see that the boundary 0 (VJ) is equal to 
the range of a Lipschitz continuous, simple, positively oriented, closed curve 
F, parametrized by C = z(t), 0 < t < 1. 

First, let 0 E V, and assume, with no loss of generality, that z(0) = J(. Let 
fi be any number with a < /1 < ii/2. Since (0(0) = (o'(0) = 1 (cf. ? 1.1), we 
can choose 5 > 0 such that 

V,, n W(fl) c int(S) u { 0}, 
0 has no poles at any C E C with CI? <(5. 

Let the curve Fo be obtained by restricting z(.) to [to t1], where z(ti) E 
O(W(fl)) (i= 0, 1). For 0< e <( we definethecurves F, F2, F3 by 

Z1(t) = texp(ifi) (-Iz(tl)l < t < -e), 

Z2(t) = e exp(it) (-r + fl < t < 7 -/), 

z3(t) = -texp(-ifl) (e < t < IZ(to)D)I 
respectively. By (3.2), the spectrum o[A] of A lies within the closed curve 
which consists of the segments F0, F1, I 2, I 3. As these are sufficiently smooth, 
we may use the Cauchy integral formula [9, p. 568] to write 

(3.3) (A)p = 2- E (C) 
n 
(CI - A)' dC 

for any e with 0 < e < (. We will bound the norms of the four terms on the 
right-hand side of (3.3) by using (3.2). First, 

(3.4.a) ||| ngj ;- A) dC| < (| 
C {dlMJsl. 

Since F1 and IF lie in int(S) and (0(0) = ?9'(0) = 1, there exists a constant 

LI > 0 such that 

(p(C)I <exp(-ICIL1) forallCEF 1u3 and0<c<(5. 
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We choose e = 6n1 . Then we get, substituting s = nt, 

| | ()n (CIl - A) 
-1 

d; C < M me 9(C)l n d (C , W (a)) - l dCI 

<MJ exp(-sL,)(ssin(fl -ca)) ds. 

The same bound is valid for the integral along F3 in (3.3). Let L2 > 0 be such 
that 

lk(C)l ' 1 + ICIL2 for all C with ICI < (s. 
We obtain 

(3.4.c) Jr/ p()( - A)I dC < 27rM(l + 6n 1L2) [sin(fl - a)] 

< 2tM exp(6L2) [sin(fl - a)] -. 

From (3.3), (3.4) it follows immediately that there exists a constant yo > 0, 
which depends on (0 and on V only, such that 

I I(p(A )n, < YOM (for n= 152, 3,...) 

If 0 0 V, we may choose a so small that Vd c int(S) and use integration 
along the curve F specified above to obtain an integral representation even 
simpler than (3.3). The conclusion of the lemma follows directly from (3.2) El 

Theorem 3.2. Assume (3.1) and 0 E V, ho > 0. Let the condition hoTM[A] c V 
be fulfilled. Then, for all h E (0, ho], estimate (1.2) holds with 

p = 0, q = 0, y = yOM, 
where yo depends only on qi and V. 
Proof. The conditions hozM[A] c V, 0 E V, the convexity of V, and property 
(2.4.b) imply that TM[hA] c V for h E (0, ho]. Characterization (2.5.a) with 
A replaced by hA shows that (CI - hA) is regular and 

II(CI- hA)YII? < Md(C, V)- forall h E (0, ho] and C 0 V. 

We may apply Lemma 3.1, with A replaced by hA. For some yo > 0, depend- 
ing only on p and V, we thus have 

(3.5) IIkp(hA)nII < yOM (n = 1, 2, ...). 

Since then satisfying (1.1) equal vn = (p(hA)nvO, the proof is completed by 
an application of (3.5). El 

Illustrations to the above theorem will be given in ??4.1, 4.2. 

3.2. Stability with p = 0, q = 1, for TM[A] within a bounded set. In this 
subsection we derive stability results for process (1.1) which, like the results 
(2.8), (2.10) and Theorem 3.2, are relevant to a large class of functions (0(C), 
including polynomials. Moreover, the assumptions we make concerning S can 
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be fulfilled in cases where (2.8.b), (2. 10.b) are violated, and the conditions we 
impose on hA can be weaker than those in Theorem 3.2. On the other hand, 
the value q = 1 we arrive at is larger than in (2.8), (2.10) or Theorem 3.2. 

We make the assumptions that 

(3.6.a) V is a compact, convex subset of C, 

(3.6.b) V c S, 

(3.6.c) s>1 AECS's, and M>1. 

Lemma 3.3. Assume (3.6), and let (CI - A) be regular with 

(3.7) II(CI-A)II ? Md(C, V)7' for allC 0 V. 
Then 

IIlp(A)nII < yoMn (n = 1, 2, 3, ... ), 

with yo only depending on i and V. 

Proof. The proof rests on a representation of ((A)n as a suitable contour in- 
tegral. Define, for e > 0, 

V,= : 4 E C and d(C, V) <g}. 

In view of (3.6.a) the set V, is compact and convex. The boundary of V, is 
equal to the range of a Lipschitz continuous, simple, positively oriented, closed 
curve IF (see, e.g., [24, Theorem 10.4]). 

By (3.7), the spectrum a[A] lies within F8. Further, in view of (3.6.b), the 
function (o has no poles in Ja for some a > 0. We take 0 <ce < a and start 
from the Cauchy integral formula [9, p. 568] 

(3.8) o(A)n = 21i f o(,)n(CI - A)' dC (n = 1, 2, 3, ...). 

Let L = max{I('(C)I: C E Vm }. Then, using (3.6.b), we can see that 

I()nl < (1 + 8L)n whenever C EC, V 0<e<a. 

So, we obtain from (3.8) 

(3.9) Ik(A) 11? < -(j IdCI)(l +eL)n? (n = 1 2, 3, ...). 

The length of r, is bounded by that of I7 (see, e.g., [13, p. 245]), which will 
be denoted by P. With e = ann 1, inequality (3.9) leads to 

Iko9(A)nIl < Pexp (aL)Mn(2 cva)l (n = 1, 2, 3, ...). 

From this, the conclusion of the lemma follows with yo =P exp(aL) (27ra)7 La 

The next theorem follows from the above lemma by using arguments that are 
analogous to those used in proving Theorem 3.2 by means of Lemma 3.1. 
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Theorem 3.4. Assume (3.6) and 0 E V, ho > 0. Let the condition hoTm[A] c 
V be fulfilled. Then, for all h E (0, ho], estimate (1.2) holds with 

p=O, q= 1, y=yOM, 

where yo depends only on (a and V. 

An illustration to the above theorem will be given in ?4.3. 

3.3. Stability with p = 1, q = 0, for TM[A] within a bounded set. Can one, 
under the- general conditions on (o and V of Theorem 3.4, improve upon the 
value q for which the theorem is true? We will see that one can keep q = 0, 
as in Theorem 3.2. However, the value of p will go up to p = 1 . We also have 
the make some further assumptions on qi and V, which are of a geometrical 
nature, but these will usually not form an impediment to the application of the 
ensuing theorem. 

In addition to (3.6) we make the assumptions that 

(3.10.a) '(C)$ 0 forallCEAVnO9S, 

(3.1 0.b) there exist a positive integer v and real coefficients a1 k (for 
j > ?0 k > 0, j + k < v) with aj k $ 0 for some j, k 
satisfying j + k = vo, such that the boundary a V of V is a 
subset of 

{C:C =C + i with 4, q E IR and K(4, I) = 0}. 

Here 
K(, ) E Cjkj qk 

O<j+k~v 

Lemma 3.5. Assume (3.6) and (3.10). Let (CI - A) be regular with 

II(CI-A)-'II <Md(C, V) for allC 0 V. 

Then 
I I(9(A )n,, < YOMs (n = 1, 25 3,..) 

with yo depending only on (0 and V. 

This lemma is an immediate consequence of the material presented in [17]. 
The following theorem can be proved by applying the above lemma and using 

arguments analogous to those used in proving Theorem 3.2. 

Theorem 3.6. Assume (3.6), (3.10) and 0 E V, ho > 0. Let the condition 
hoTM[A] c V be fulfilled. Then, for all h E (O, ho], estimate (1.2) holds with 

p=1, q=0, y=yOM, 

where yo depends only on (q and V. 

An illustration to the above theorem will be given in ?4.3. 
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The question arises whether the values p = 1, q = 0 in the above theorem 
can be replaced by p = q = 0. Unfortunately, the answer is negative. A 
counterexample can be constructed along the lines of [15, ?6.1]. The authors 
have not been able to answer the question whether Theorem 3.6 is still valid for 
some p, q with p+q <1. 

4. EXAMPLES AND APPLICATIONS 

4.1. Stability estimates in the numerical solution of the heat equation. We will 
apply Theorem 3.2 to derive stability estimates, with respect to the maximum 
norm, in the numerical solution of the 1-dimensional heat equation 

NetU(x, t) = '92 u(x, t) (O < x < 1; t > 0). 

We assume homogeneous Dirichlet boundary conditions and an initial condition 
for u to be given. Standard space discretization with Ax = ( 1 + s) [ leads to 
an initial value problem for a system of s ordinary differential equations of 
type 

d U(t) = AU(t) (t> 0). 

Here, U(t) stands for a vector in 1Rs (unknown for t > 0) and A is the square 
tridiagonal matrix of order s with entries -2(Ax) 2 on the main diagonal and 

(Ax) on the adjacent diagonals. 
Consider the numerical solution of the above system by any standard one- 

step method (such as a Runge-Kutta method or Rosenbrock method; cf., e.g., 
[12]) with stepsize At = h > 0. One then obtains approximations un U(nAt) 
from a particular recurrence relation of type (1.1). In the following we study 
the stability of this recurrence relation. 

In order to be able to apply Theorem 3.2, we first consider the numerical 
range of the matrix A (with respect to the maximum norm I . I = I . I. on CS) . 
Let any a be given with 0 < a < t/2. It follows from [16, Theorem 3.1] that 
there exist M > 1 and AO > 0 such that 

TM[A] C W(a) n {C: Re C > -A?(AX) }. 

Here the quantities M and AO depend on a but not on Ax. We give two 
applications of Theorem 3.2. 

(i) Assume a E (0, 7r/2) is such that, for the stability region S of the one- 
step method under consideration, we have 

W(a) c int(S) U {0}. 

Note that we do not assume, as in (2.7.b), that Io(oo)I < 1. Let C > 0 be any 
given constant, and define 

V = W(a) n {4': Re 4 > -A0C}J. 
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Then the conditions of Theorem 3.2 are fulfilled provided h0(Ax)-2 < C. 

Consequently, for any At = h > 0 and Ax = (1 + s)[ with 

At(AX)-2 < C 
there is strong stability in the following sense: Any solution vn of our recurrence 
relation (1.1) satisfies Jvn1. < YIvOIj with y independent of vo, n, At, Ax 
(but possibly depending on C). 

(ii) Consider any a E (0, 7r/2). Since (9(0) = (o'(0) = 1 for the function (a 
under consideration, there exists A > 0 such that (3.1 .b) holds for 

V = W(a) n f{4: Re 4 > -i}. 

Hence, the conditions of Theorem 3.2 are fulfilled with ho = (AA)2r . This 
implies again strong stability under a stepsize condition At(Ax)-2 < C-but 
now with C = Al, whereas in the first application (i) there was no restriction 
on C. Note that in the present application the function (a can be a polynomial, 
while in the first application process (1.1) was necessarily implicit. 

The above conclusions do not seem to follow easily from the related material 
in [4, 6, 25]. 

4.2. A numerical illustration to Theorem 3.2. We consider the initial value prob- 
lem in RS, s > 2, 

(4.1.a) d-U(t) = AU(t) (t > 0), dt 
(4.1.b) U(O) = UO, 
where A = (aXjk) is the nonsymmetric tridiagonal s x s matrix with 

a -=i (2<I<s), 

jcj =-(2j+3) (1? <_ s), 

aj,j+lji+ I (I < j !< 5-) 

We choose h > 0 and apply (1.1) in order to obtain numerical approximations 
Un to the solution U(nh) of (4.1) for n = 1, 2, 3 .... We use (04') = 1 + 4 + 

cc2 and choose c such that the stability interval along the real axis is maximal. 
This choice yields c = 1/8 and 

int(S) n R = (-8, -4) u (-4, 0) 

(cf. [12]). In the following we deal with the maximum norm j | = I and 
study the actual stability behavior of process (1.1) for two different choices of 
the stepsize h. 

(i) Let D = diag(1!, 2!,..., s!). Then DAD-1 is a symmetric irreducible 
tridiagonal matrix. The main diagonal is the same as that of A, whereas the 
second diagonals contain only ones. Hence (cf., e.g., [5, p. 352]), the eigenvalues 
i of A are all different from each other and satisfy 
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With s = 40, h = 0.07, we have 

(4.2) h4Al] c (-8, -4) U (-4, 0) c int(S), 

so that condition (1.3.b) is fulfilled here. Defining 

(4.3.a) Yn = Ijq(hA)n11, 

we see that Yn is the smallest constant with 

(4.3.b) IVnIj < YnvI for all Vo E Rs and Vn satisfying (1. 1). 

Since (1.3.b) is fulfilled, (1.2) holds for some y > 0 and p = q = 0. Con- 
sequently, supn> 1 Yn < y. It is evident from the values in Table 1 that the 
smallest possible value of y is quite large-from a practical point of view there 
is actually instability. 

TABLE 1 
Some values of yn for h = 0.07 

n 1 4 16 64 256 1024 4096 

Y. 2.8x100 1.3x 0 1 1.6x103 9.8x106 3.3x109I0 2.6x10' 3.1 xl 

(ii) Define V to be the union T1 U T2 of the triangle 

T1 = {I: In - arg ? < 7/6 and - 27/16 < Re O < 0} 

and the disk 

T2= {I: IC + 9/41 < 9/8}. 

Straightforward numerical calculations show that the general conditions (3.1 .a), 
(3.l.b) are fulfilled in the situation at hand with a = r/6. Using (2.3), we can 
see that also 

hOtM[A] c V 

with M = l, ho = 9/(8s + 4). All assumptions in Theorem 3.2 being fulfilled 
here, we thus can conclude that the stability estimate (1.2) holds with p = q = 
0, y = yo whenever s > 2 and 0 < h < ho. With s = 40, we arrive at 

ho = 1/36 - 0.02777. We use h = 0.027 to compute some values of Yn as 
defined in (4.3). They are listed in Table 2 and point to a fine stability behavior 
of the numerical process (1.1)-perfectly in agreement with Theorem 3.2. 

TABLE 2 
Some values of yn for h = 0.027 

n 1 2 4 8 16 32 64 

1 1.2 x 100 1.0 x 100 8.4 x 10-1 5.3 x 101 2.3 x 10- 3.9 x 102 7.4 x i04 
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4.3. A numerical illustration to Theorems 3.4 and 3.6 with a cigar-shaped V. 
Theorems 3.4 and 3.6 are more general than Theorem 3.2 in that there is more 
freedom in choosing the set V. We will give an example where V is cigar- 
shaped and illustrate the practical relevance of Theorems 3.4 and 3.6 by compar- 
ing the stability results predicted by the theorems to the outcome of numerical 
experiments. This outcome cannot be explained by the theorems in [4, 6, 15, 
20, 25, 27], where V has to be of conventional shape. 

In the following we illustrate our theorems with the cigar-shaped V of type 

V(A, P-)=fC:C4= 4+qrwith4ERIl, qEC(S -A-P <4<-P. jq < P}, 
where A, p > 0 are given parameters. 

Consider the initial-boundary value problem 

&U(x, t) 2 U(x, t) - 200 U(x, t) - 137000 . x * U(x, t), 

U(0, t) = U(1, t) = 0, U(x, 0) = U0(x), 

where 0 < x < 1, t > 0, and U0 is a given function. 
To formulate a numerical method for approximating U(x, t), we choose 

At = h > 0, Ax = (1 + s) l, and the tridiagonal s x s matrix A = (aik) with 

=1 )-2 100(A )-1 (2 < j < s), 

-2 
a x =-2(Ax) -137000 * j * Ax (1 <j<s), 

=( )-2 _ oo()-1 (1 < < 1 ). 

Let un be computed from (1.1) starting with 

Uo = (UO(Ax), UO(2Ax), .*., Uo(sAx))T. 

Then the kth component of un approximates the true U(x, t) for x = k Ax, 
t= nh, 1 < k < s, n > 1. 

We use the maximum norm = 1 on Rs. A straightforward calculation 
reveals that (cf. (2.3)) 

l[A] C V(A0, po) 

with A% = 137000, p0 = 2(Ax) , provided Ax is so small that 100 *Ax < 1. 
Let A, p be such that the stability region S of (0 satisfies V(A, p) C S. 

Then the condition h 0Tz[A] c V of Theorems 3.4 and 3.6 is fulfilled with 
V = V(A, p) if ho is chosen so small that 

ho V(I, pO) C V(A, P). 

One easily sees that for ho = min{A/137000, p(Ax)2 /2} the latter inclusion 
holds. Theorems 3.4 and 3.6 (provided (3.10) is fulfilled) thus apply to stepsizes 
h satisfying 

(4.4) h < min 
A P 

p.(AX 2 
(4.4) h~~~~min ~137000' 2 
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We now focus on functions (0 of type 

(4.5) o(4) = 1 + 4 +O.542+ CC3, 

so that the right-hand member of the stepsize restriction (4.4) depends on A, p 
corresponding to this (a. Therefore, one might try to choose c so as to maxi- 
mize the right-hand member of (4.4). 

In [12, pp. 92, 93] it is shown that the set V(A, 0) is maximal for c = 0.0625 
with optimal A i 6.26. However, for these values of c, A there exists no 
positive p such that V(A, p) c S. Modifying the value 0.0625 only slightly, 
one can arrive at 

c = 0.0645 with A = 4.67, p = 0.68. 

In the following we confine our discussion first to these values. 
It can be verified that (3.10.a), (3.10.b) are fulfilled with V = V(A, p). 

Therefore, Theorems 3.4 and 3.6 show that (1.2) holds with the maximum 
norm and both with p = 0, q = 1 and with p = 1, q = 0, while y can be 
chosen independently of the individual h, Ax satisfying (4.4). 

For Ax = 1/100, h = 3.4 x 10- 5 we have equality in (4.4), so that the error 
propagation should still be mild. Table 3 displays a numerical experiment, 
which is in agreement with this prediction. 

TABLE 3 
Some values of yn for Ax = 10-2 , h = 3.4 x 10- , and c = 0.0645 

n 1 2 4 8 16 32 64 128 256 

yn 1.24 1.25 1.31 1.34 1.28 1.07 0.471 0.0178 0.3 x 10-6 

In this table, Yn has a similar meaning as in ?4.2. 
With the same A, Ax, h as above, but with c = 0.0625, we have A - 6.26, 

p = 0, so that our stepsize restriction (4.4) is violated. An easy calculation 
shows that the eigenvalues of A are different from each other and real with 
o[A] c (-15.7 x 104, -2 x 10) . It can be verified that, with h = 3.4 x I 0 5 

c = 0.0625, the stepsize restriction (1.3.b) is fulfilled. Consequently, (1.2) holds 
with p = q = 0 for some y > 0. Table 4 displays the actual stability behavior 
of the numerical process that is now under consideration. 

TABLE 4 
Some values of Yn for Ax = 10-2, h = 3.4 x 10- 5, and c = 0.0625 

n | 1 2 8 32 128 512 2048 8192 

[ 1.4 1.6 3.4 47 1 X105 1.7x 109 1.4x 1011 3.1x 101 

Here, Yn has the same meaning as in the previous table, the only difference 
being that now c = 0.0625 instead of c = 0.0645. 
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The above two tables nicely illustrate the superiority of the stepsize restric- 
tions along the lines of ?3 over those based on (1.3). 
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